Partial observations, partial models and partial residuals in least-squares refinement
نویسندگان
چکیده
منابع مشابه
Partial least squares methods: partial least squares correlation and partial least square regression.
Partial least square (PLS) methods (also sometimes called projection to latent structures) relate the information present in two data tables that collect measurements on the same set of observations. PLS methods proceed by deriving latent variables which are (optimal) linear combinations of the variables of a data table. When the goal is to find the shared information between two tables, the ap...
متن کاملPartial Least Squares Regression (PLS)
Number of latents The same number of factors will be extracted for PLS responses as for PLS factors. The researcher must specify how many latents to extract (in SPSS the default is 5). There is no one criterion for deciding how many latents to employ. Common alternatives are: 1. Cross-validating the model with increasing numbers of factors, then choosing the number with minimum prediction error...
متن کاملPartial Least Squares (PLS) Regression
Pls regression is a recent technique that generalizes and combines features from principal component analysis and multiple regression. It is particularly useful when we need to predict a set of dependent variables from a (very) large set of independent variables (i.e., predictors). It originated in the social sciences (specifically economy, Herman Wold 1966) but became popular first in chemomet...
متن کاملNon-Metric Partial Least Squares
In this paper I review covariance-based Partial Least Squares (PLS) methods, focusing on common features of their respective algorithms and optimization criteria. I then show how these algorithms can be adjusted for use as optimal scaling tools. Three new PLS-type algorithms are proposed for the analysis of one, two or several blocks of variables: the NonMetric NIPALS, the Non-Metric PLS Regres...
متن کاملSparse Orthonormalized Partial Least Squares
Orthonormalized partial least squares (OPLS) is often used to find a low-rank mapping between inputs X and outputs Y by estimating loading matrices A and B. In this paper, we introduce sparse orthonormalized PLS as an extension of conventional PLS that finds sparse estimates of A through the use of the elastic net algorithm. We apply sparse OPLS to the reconstruction of presented images from BO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Crystallographica Section A Foundations of Crystallography
سال: 2011
ISSN: 0108-7673
DOI: 10.1107/s0108767311084820